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A B S T R A C T

Chinese agricultural output has been multiple under the intensive input of production factors since the reform
and opening-up. Such a growth pattern that realizes high output through high input results in increasingly
prominent environmental pollution problems. Considering the provincial panel data in China during 1978–2017
as the research units and taking agriculture in broad sense as the study object, the agricultural eco-efficiency
(AEE) was measured by the Super-SBM Model, and the influencing factors were screened out from agricultural
basic condition, agricultural industrial structure, agricultural development potential and agricultural input
strength. The findings indicated that agricultural expected output and unexpected output were synchronously
increased, while the change of input factors was totally different and gradually transferred to materiality from
resources. In 1978–2017, AEE was increased to 0.713 from 0.405, with an increase of about 76%. And it ap-
proximately underwent four stages, including free development, reform promotion, market regulation and policy
incentives. Under the resource restraint and policy incentives, AEE showed that Northeast, East and South China
were higher than the national average level. North and Central China basically fitted for the national average
level, and Southwest and Northwest China were lower than the national average level. Also, it was successively
present in some spatial characteristics including polarization, differentiation, agglomeration and reconstruction
on the provincial scale. The magnitude and direction of influencing factors indicated that the introduction of
subsidy policies for compound fertilizers, an increase of farmers’ incomes, optimization of agricultural plantation
structure, and maintenance of stable agricultural product prices could effectively improve AEE.

1. Introduction

China is the most populous country and also a big agricultural
country (Liu et al., 2018a,2018b,2018c), whose agricultural develop-
ment has achieved remarkable achievements (Deng and Gibson, 2019).
The nation’s total grain output, meat output and aquatic product output
showed a 2-fold, 10-fold and 14-fold increase from 1978–2017, and the
current outputs equaled about 1/5, 1/4 and 1/3 of world corresponding
supplies. It is evident that China is well accomplished in its develop-
ment of agriculture, which acted as a powerful support for the healthy
and continuous development of the nation’s economy as well as its
society (Liu et al., 2019). However, the application of chemical fertili-
zers, agricultural plastic films and pesticides has increased by 6.6 times,
5.3 times and 2.3 times, respectively (Rural Social Economic
Investigation Division, National Bureau of Statistics of China, 2018).
The utilization rate of fertilizers and pesticides was less than 1/3 and

the recovery rate of plastic film was less than 2/3, the effective treat-
ment rate of livestock and poultry manure was less than 50%, and straw
incineration and marine eutrophication are serious (Ministry of
Agriculture et al., 2015). Thus, it could be seen that the agricultural
growth mainly depends on the intensive input of production factors,
and it is this kind of agricultural production pattern with high-yield,
low-efficiency and high-input (Liu et al., 2019; Rao et al., 2012; Zou
et al., 2020) that has caused the agricultural pollution to become more
and more serious, even exceeding the industrial pollution as the main
source of water pollution (Li et al., 2011; Liu et al., 2013). Therefore, it
is of great importance for policymakers to investigate the agricultural
performance and its influencing factors as making agricultural sus-
tainable policies.

Eco-efficiency was originally introduced in the literature as a
quantitative management tool for studying economic and environ-
mental aspects by Schaltegger and Sturm (1990), and its concept, as a
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distance between a certain quantity of input and output of sustain-
ability environmental performance, was proposed by the World Busi-
ness Council for Sustainable Development (Verfaillie and Bidwell,
1991). Until 1998, the Organization for Economic Co-operation and
Development (OECD) promoted eco-efficiency initiatives in the agri-
cultural sector with the purpose of tackling the increasing concern on
the relationship between environmental impacts and agricultural pro-
duction (OECD, 1998). Since then, a growing number of international
literatures about eco-efficiency assessment in agriculture sector have
already been developed and made great achievements (Liu et al., 2019;
Maia et al., 2016), many case studies at different scales are promoted in
North America (Konefal et al., 2019; Reith and Guidry, 2003), Latin
America (Rosano Peña et al., 2018), Europe (Gómez-Limón et al., 2012;
Maia et al., 2016; Rybaczewska-Błażejowska and Gierulski, 2018), Asia
(Bidisha et al., 2018; Halder, 2019; Huang and Jiang, 2019) and Africa
(Nsiah and Fayissa, 2019), demonstrating the possible gains in the
evaluation of the environmental impacts and economic aspects.

To quantify the eco-efficiency performance of agriculture, many
methods were built and used, such as Ratio Method, Life Cycle
Assessment (LCA), Stochastic Frontier Analysis (SFA) and Data
Envelopment Analysis (DEA). These methods have their own ad-
vantages and disadvantages. Among them, SFA and DEA are the two
most important methods achieving highly correlated results in most
cases (Alene and Zeller, 2005; Todorovic et al., 2016; Wang and Zhang,
2018). SFA is a parametric method, although it can distinguish statis-
tical error and management error and can avoid the influence of un-
controllable factors on inefficiency, by which make the results closer to
reality (Aigner et al., 1977; Meeusen and Broeck, 1977), it is generally
only suitable for single-output and multi-input production (Jin et al.,
2019). DEA is a widely accepted non-parametric method to evaluate the
eco-efficiency involved in multi-output and multi-input (Vlontzos et al.,
2014). It can estimate the frontier production function in the form of
material objects and overcome the influence of non-technical factors
such as an unreasonable price system on the frontier production func-
tion (Angulo-Meza et al., 2019; Picazo-Tadeo et al., 2011; Toma et al.,
2015).

There are numerous existing studies focusing on eco-efficiency in
the agricultural sector of China in the recent period. Most of them
mainly put emphasis on the changing trends of agricultural eco-effi-
ciency (AEE) over a period of time. Notable among them are Deng and
Gibson (2019), who estimated land productivity in Shandong Province
during 1990–2010 using the Estimation System of Land Production
(ESLP), and then analyzed the eco-efficiency for the sustainable agri-
cultural production based on SFA. Wang and Zhang (2018) estimated
the provincial AEE in 1996–2015 by DEA, and pointed out that the
overall trend in China was on the rise and existed inter-provincial dif-
ferences. Hou and Yao (2018) measured the inter-provincial AEE from
1978 to 2016 by the Super-SBM model, and predicted its long-term
evolution trend by using the traditional and spatial Markov probability
transfer matrices. Besides that, several of the studies also have sought to
explain the observed variation of AEE in terms of a number of farm
characteristics like local off-farm employment and migration (Yang
et al., 2016), fertilizer overuse (Huang and Jiang, 2019), agricultural
subsidy policies (Li et al., 2019a,2019b; Wagan et al., 2018), and
agricultural mechanization (Zhou and Kong, 2019).

Along with the existing studies, there are three important points
should be noted. First, the objects mainly focused on agriculture in
narrow sense, which means crop-plantation (Hou and Yao, 2018;
Picazo-Tadeo et al., 2011). Generally, agriculture has broad sense and
narrow sense. In the broad sense, it contains the crop-plantation, for-
estry, animal husbandry and fishery, while in the narrow sense, it only
refers to the crop-plantation. In terms of Chinese agricultural output
value, the current output value of crop-plantation accounts for about
50% of gross output value of agriculture, indicating that the traditional
agricultural production pattern that gives priority to crop planting has
been gradually replaced by the diversified agricultural production

mode (Huang, 2016; Shen et al., 2014). Furthermore, the pollutant
discharge proportion of the non-planting industry in agricultural pol-
lutants is close to 75%, implying that if the eco-efficiency of the crop-
plantation is used to represent China’s AEE, the estimated results will
have a great deviation with the physical truth (Wang and Zhang, 2018).
Second, previous studies mainly analyzed the temporal changes of AEE,
while were lacking in characterizing the spatial distribution and dy-
namic variation, and the explanation of spatial-temporal patterns was
poor in institutional and policy environment (Chen and Zhang, 2019;
Ray and Ghose, 2014). It has been widely proven that the AEE is closely
associated with the agricultural development level and relevant macro-
environment (Aznar-Sánchez et al., 2019; Liu et al.,
2018a,2018b,2018c). Consequently, the agricultural performance
should be judged not merely by the development level of inputs, but
also by the system revolution and policy succession (Halder, 2019).
Third, previous studies have paid less attention to the influencing fac-
tors, lacking the integration of human and natural factors, and the
quantitative decomposition of each index was even less common
(Aznar-Sánchez et al., 2019; Wang and Zhang, 2018). As we are facing
resources restraints and increasing food demand, modern agricultural
development should rely on precise implementation of agricultural re-
form policies, and thus a quantitative examination on the influencing
factor of AEE is the foundation for the policy makers to design policies
tailored to local conditions (Deng et al., 2016).

Since the 21 st century, the issue relating to agriculture, rural areas
and farmers has become the top priority of Chinese agricultural mod-
ernization. The No. 1 central document focused on this theme for 17
consecutive years, especially for the introduction of a series of new
agricultural policies, such as increasing agricultural subsidies, realizing
agricultural modernization, and promoting the supply-side structural
reform of agriculture, which activated the intrinsic vitality of rural and
agricultural development (Cai et al., 2017; Zhao et al., 2016). As the
most important industry of rural society in China, AEE not only reflects
the stability, efficiency and sustainability of agricultural ecosystem, but
also reveals the evolution of agricultural ecosystem and the change of
interaction between human and land system (Liu et al.,
2018a,2018b,2018c). Against this context, the paper concentrated on
the following objectives: 1) to depict the spatial-temporal variation of
agricultural output and input from 1978–2017, 2) to estimate the AEE
involving multi-output and multi-input, 3) to analyze the variation
mechanism of AEE combining the system revolution and policy suc-
cession aspects, 4) to identify the influencing factors of AEE and put
forward some improvement suggestions. The remainder of this paper is
organized as follows: Section 2 describes the research methods and
materials, then Section 3 presents the empirical results and provides
some policy implications, and then Section 4 concludes the paper.

2. Methods and materials

2.1. Estimation of agricultural eco-efficiency based on Super-SBM model

In the process of agricultural production, the input of production
factors not only produces expected output, but also discharges various
pollutants, that is, unexpected output (Färe and Grosskopf, 2009). Ac-
cording to the previous statement, the agriculture in broad sense is
selected as the research object in this study, and by which the gross
output of agriculture, forestry, animal husbandry and fishery (AFAF) is
selected as the expected output index, which reveals the total scale and
overall achievements of agricultural production. Agricultural un-
expected output mainly comes from excessive input or low-efficient
utilization of some production factors (Adu and Kumarasamy, 2018).
To be specific, this paper considers the total pollution loads of chemical
oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP),
discharged by farmland fertilizers, livestock breeding, aquaculture and
farmland straw, as unexpected output indexes.

Referring to the summary of input indicators of AEE in existing
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literatures, four input variables are selected, including land, labor, ca-
pital, and technologies (Hou and Yao, 2019; Yang et al., 2016). The first
one, land, has been measured by the “crop sown area”, which is more
accurate in measuring the actual utilization rate of land than “arable
land area”. The second one, labor, has been measured by the “agri-
cultural labor force” directly obtained from the existing statistical data.
The third one, capital, has been measured by the “agricultural capital
stock”, which is the currency replacement value of tangible fixed assets
(such as machinery, construction, livestock, land improvement) that
can be reused in the agricultural production process. The fourth one,
technologies, has been measured by the “agricultural machinery power”,
refers to the total power of various power machinery mainly used in
AFAF and expresses as an important feature of modern agriculture.

At present, DEA is an effective method to analyze the AEE, which
was proposed as a mathematical programming for evaluating the re-
lative efficiency of decision making units (DMUs) having multi-output
and multi-input (Charnes et al., 1978). However, the basic DEA has
shortcomings in two aspects: one is that the efficiency rating results in
practice has a deviation for numerous strict assumptions in cone and
radial direction. The other one is that negative external benefits or
other unexpected output are not brought into consideration. Hence,
Tone (2001) proposed a non-radial and non-angular SBM model, which
gives an overall consideration to input and output of each DMU and
directly puts the slack variable into the target function, so as to solve a
problem of the slack input-output. The Super-SBM model based on
unexpected output is adopted in this study. The model is constructed as:
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In the formula, E assumes that there are n DMUs. Each DMU is
composed of input (m), expected output (r1) and unexpected output (r2).
x , yd and yu respectively represent the input matrix, expected output
matrix and unexpected output matrix. ρ is the value of AEE. The esti-
mation of efficiency scores is conducted using the DEA-SOLVER
Pro12.0 software.

2.2. Identification of influencing factors based on regression analysis

The National Modern Agriculture Development Plan (NMADP)
(2011–2015) advocates promoting Chinese modern agricultural devel-
opment from eight aspects, such as agricultural science and talent
support, agricultural infrastructure conditions, agroecological en-
vironment. Based on these, the influencing factors of AEE are inspected
from the agricultural basic condition, agricultural production structure,
agricultural development potential, and agricultural input strength in
Table 1. To be specific, (1) precipitation is the primary natural factor to
determine regional agricultural efficiency. On the one hand, the more
abundant precipitation, the higher the agricultural productive compe-
tence (Wang et al., 2017). On the other hand, rainfall-runoff intensifies
the migration of agricultural pollution (Chen et al., 2018). (2) The
agricultural accessibility level reveals the transportation costs and
agricultural marketization degree. The better regional transportation
condition implies the lower agricultural product transportation cost,
and the higher the marketization degree. (3) Irrigation facilities are
basic conditions for high-efficient agricultural development. The bigger
the irrigation area is, the stronger agricultural productive competence
will be and the higher eco-efficiency will be Sun et al. (2019). (4) The
crop sown area shows the agricultural plantation scale. The larger the

agricultural plantation scale, the larger the potential expected output
and unexpected output. Therefore, its impact on AEE is unknown. (5)
Due to a big input-output efficiency difference between cash crops and
grain crops, AEE also has a great difference. Studies have indicated that
from the perspectives of the labor force and biological chemical input,
the horticultural plants reaches the maximum, followed by cash crops
and grain crops (Song and Li, 2019). Therefore, if cash crops have a
bigger cultivated area than grain crops, AEE will be lower. (6) Livestock
breeding now is the primary agricultural pollution source in China.
More than 50% of livestock and poultry manure are directly discharged
without disposal. Hence, the higher the proportion of livestock
breeding in agriculture, the lower AEE (Yang et al., 2013). (7) The
improvement in farmers’ income levels will generate the income effect
and substitution effect on AEE. In other words, high-income is expected
to induce farmers to enlarge input of production factors to gain more
and more agricultural products, so as to inevitably result in increased
pollution emissions (Wang and Zhang, 2018). Besides, an increase in
farmers’ incomes may drive them to purchase and use high-quality
production materials, so as to be a benefit for reducing agricultural
pollution discharges (Xiao et al., 2014). (8) The rising agricultural
product price would enhance farmers' willingness to enlarge the input
of production factors (i.e. pesticides and fertilizer), which would result
in increasing agricultural pollution discharges. (9) Agricultural resource
endowment reveals the agricultural scale to some extent. It has been
observed that per capita cultivated land is present in the positive cor-
relation with the scale of agricultural operation (Wang et al.,
2015a,2015b), while agricultural scale operation means high-strength
input of pesticides and fertilizers. (10) If the farmers have a higher
education, they have a stronger subjective initiative to use new tech-
nologies or accept pollution reduction policies (Bayyurt and Yılmaz,
2012; Chen and Zhang, 2019), which is conducive to AEE. (11) Agri-
cultural mechanization is the main part of agricultural technology in-
novation in current days. The input of agricultural machinery would
increase the input of petrifaction resources, while enhancing agri-
cultural production efficiency, so its influence on AEE is unknown
(Zhou and Kong, 2019). (12) China is the great power of fertilizer
production and consumption, but the overall level of use ratio is not
high, resulting in serious resource waste or even accumulating in ni-
trogen and phosphorus in soils (Huang and Jiang, 2019). (13) Agri-
cultural films are mainly used for covering farmlands and develop a role
of improving ground temperature, guaranteeing the quality of soil hu-
midity, promoting seed germination and rapid growth, but traditional
agricultural plastic films have low recovery and they are not easy to be
decomposed. (14) Even if pesticides can effectively prevent insect dis-
ease and regulate plant growth, they would cause serious environ-
mental pollution when they flow into the environment.

We used the Ordinary Least Squares (OLS), Fixed Effect Model
(FEM) and Random Effect Model (REM) to analyze the influencing
factors of AEE. Considering that AEE calculated by the Super-SBM
model is a variable with a nonnegative truncated feature. For such a
restricted dependent variable, OLS is often used to obtain biased esti-
mation results. What’s more, the explanatory variable of AEE is pro-
vincial panel data, so OLS estimation violates the basic assumptions of
error serial correlation, error provincial horizontal correlation and error
heteroskedasticity. As a result, FEM and REM of panel data are utilized
in this paper. The FEM/REM is stated as follows:

∑= + + +AEE β β X μ εit
j

j j it i it0 ,
(3)

In the formula (3), AEEit represents the eco-efficiency of the agri-
cultural sector, i and t respectively stand for the ith province and tth
year. β0 is the intercept term and βj is the coefficient of the explanatory
variable, Xj it, is the explanatory variable, μi is the individual effect, and
εit is the random error term. In addition to the explanatory variable, the
above-mentioned models contain observable and unobservable vari-
ables that are not included in the regression models. If μi is related to a
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certain explanatory variable, it is called the FEM. If μi is not related to
all explanatory variables, it is called the REM. The FEM can solve the
endogenous problem caused by individual differences, while the REM
enables individual observation to show a certain correlation, so as to fit
for data including dependent observation. The selection of two models
is inspected by Hausman. In order to overcome the heteroscedasticity
problem of the data and reduce the single integer order, all variables
are logarithmic, except for APS, LIVESTOCK, and EDUCATION. The
statistical significance is defined from the p-value of a two-tailed
Student’s t-test. Besides, R2 is used to measure the goodness of fit of
regression models. The closer the value is to 1, the better the fitting
degree of the model to the observed value will be; otherwise, the
smaller the value is, the worse the fitting degree of the model to the
observed value will be.

2.3. Data source and processing

This paper regarded agricultural input-output data of 31 provinces
in China from 1978 to 2017 as samples excluding Hong Kong, Taiwan
and Macao. Due to the adjustment of administrative division, data of
Chongqing in 1978–1996 were included in Sichuan. Data in Hainan in
1978–1987 were contained in Guangdong. The gross value of AFAF
came from the China Rural Statistical Yearbook (1985–2018) and
Statistic Yearbook (1978–1984) in each province, which conducted the
price deflator with the base period of 1978. Since there is lack of pro-
vincial statistical data of agricultural pollutant loads, pure application
of fertilizers, numbers of livestock and poultry, output of aquatic pro-
ducts, and crop yield were gained from China Rural Statistical Yearbook,
Agricultural Statistical Compilation for 30 years of Reform and Opening-up,
Agricultural Statistics for 50 years in New China, Agricultural Statistics for
60 years in New China, China Statistical Yearbook, China Fishery Statistical
Yearbook, China Marine Statistical Yearbook, China Agricultural
Machinery Industry Yearbook, Chinese Agricultural Statistical Compilation.
An inventory analysis is adopted to estimate the pollutant loads of COD,
TN and TP (Chen et al., 2006; Lai, 2004; Zou et al., 2020), which are the
main components of agricultural pollutants. Crop sown area, farmers
engaged in AFAF, agricultural mechanical power, rainfall, road
mileages and valid irrigation area are also collected from the above-
mentioned statistical data. The agricultural capital stock is measured by
the perpetual inventory method taking 1978 as the base year (Chow,
1993).

In order to increase the model explanatory, Variance Inflation
Factor (VIF) was used to do multicollinearity analysis for all variables,

finding that VIF of valid irrigation area and crop sown area are greater
than 10. It showed the multicollinearity between them. Considering the
uncertainty of crop sown area on the influence of AEE, it was excluded.
The remaining 13 variables were used as the explanatory variables into
the model.

3. Results

3.1. Descriptive analysis of agricultural input and output

It was showed that Chinese agricultural output and input in
1978–2017 ha d a larger amplitude and totally different change rule,
indicating that the agricultural production mode was constantly ad-
justed under the impacts of economic development, social structural
change and policy evolution. To be specific in Fig. 1, the overall growth
trends of expected output and unexpected output were obvious, but
there were slight fluctuations during the period. Land input (crop sown
area) maintained an upward trend as a whole, but the amplitude of
fluctuations was great. Labor input (agricultural labor force) was pre-
sent in the inverted “U” type. Capital input (agricultural capital stock)
showed rapid exponential growth. Technical input (agricultural ma-
chinery power) was climbing straightly. These change characteristics
implied that since the reform and opening policy, Chinese agricultural
production has been transformed into substance dependence (e.g. ca-
pital, technologies and fertilizers) from resource dependence (e.g. land
and labor) under the guidance of urbanization, industrialization and
agricultural modernization. Such a transformation brought the multiple
growth of agricultural economic output and resulted in the increasingly
prominent agricultural pollution problem (Huang and Jiang, 2019).

In 2017, Chinese agricultural output and input showed obvious
regional, and it revealed the spatial pattern of “high in the east and low
in the west” in Fig. 2, which was basically consistent with the agri-
cultural regional pattern drawn by Liu et al. (2018a,2018b,2018c). To
be specific, the percent contributions of expected output and un-
expected in Central and East China are relatively high, while that of
North China and Northwest China are relatively low. The percent
contributions of land input in Central and Northeast China, and that of
labor input in Central and Southwest China are higher than in other
regions. Capital input in Central and North China, and that of technical
input in Central and Eastern China take up larger percent contributions.
The results are consistent with the fact that these provinces were major
agricultural areas with a large rural population (Chen et al., 2006). The
spatial-temporal features of agricultural output and input indicated that

Table 1
Explanatory variable, index description and symbol prognosis of agricultural eco-efficiency.

Primary variable Secondary variable Abbreviation Index description Direction

Agricultural basic condition Precipitation RAINFALL Average annual rainfall of main cities Unknown
Agricultural accessibility level ROAD Mileage of highways* +
Agricultural irrigation conditions IRRIGATION Effective irrigation area +

Agricultural industrial structure Agricultural planting scale APA Total crop sown area Unknown
Agricultural planting structure APS Seeded area of grain crops/ seeded area of cash crops –
Livestock breeding proportion LIVESTOCK The proportion of animal husbandry in total agricultural output

value
–

Agricultural development potential Agricultural dependence degree INCOME Per capita disposable income of farmers Unknown
Market stability of agricultural
products

APPPI Agricultural products’ price index –

Agricultural resource endowment ARE Cultivated land area per capita –
Farmers’ education level EDUCATION The proportion of illiteracy population in rural areas above 15 years

old
–

Agricultural input strength Technological innovation strength TECHNOLOGY Total power of agricultural machinery/output of planting industry Unknown
Fertilizer use intensity FERTILIZER The pure application of fertilizers/ output of planting industry –
Film use intensity MPF The application of agricultural plastic film /output of planting

industry
–

Pesticides use intensity PESTICIDES The application of pesticides/output of planting industry –

* The mileage of highways refers to the length of highways that has actually reached the specified grade in the Technical Standard of Highway Engineering
(JTJ01-88) and have been formally accepted and delivered for use by the highway authorities.
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due to different geographic spatial patterns, resource endowment and
agricultural economic development level, Chinese agricultural devel-
opment had the obvious provincial differentiation and asynchronism,
which would result in differences of AEE.

3.2. Measurement and divisional discussion of agricultural eco-efficiency

Through comparative analysis, the Super-SBM Non-Oriented (VRS)
model was adopted to measure the Chinese AEE. It was shown that the
national AEE had increased from 0.405 in 1978 to 0.713 in 2017, in-
creased by about 76%. It illustrated that the AEE was remarkably im-
proved under the restriction of a series of agricultural pollution control
measures and policies. However, the AEE in 2017 was lower than the
maximum of 0.764 in 2016. Moreover, AEE in Northwest China was

only 0.495, implying that there is a large space for resource-saving and
environmental protection in the development of Two-oriented
Agriculture.

The evolution of AEE overall underwent four stages in Fig. 3: the
first one was the free development stage in 1978−1985. Due to the lack
of market mechanisms and national policy, the AEE fluctuated slightly.
The second one was the reform promotion stage in 1986−1995. Due to
the promotion of household contract responsibility system, and the
nation gradually reformed the central procurement dispatching system
of agricultural and sideline products into the system with the priority of
planning and assistance of market regulation, the enthusiasm of agri-
cultural producers was fully mobilized (Wagan et al., 2018). Further-
more, considering the scale effect of production factor input, the growth
amplitude of agricultural expected output exceeded unexpected output,

Fig. 1. The changing trend of agricultural input and output in China from 1978 to 2017.

Fig. 2. Spatial pattern of agricultural output and input in 2017 in China. The length of bars in different colors stand for the percent contributions of output and input
factors in national totals.
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showing the rapid growth of AEE. The third one was the market reg-
ulation stage in 1996–2006, which was featured with protecting agri-
cultural production, supporting the increase of farmers’ incomes, pro-
moting rural development, abolishing agricultural taxes, and re-feeding
agriculture by industry. AEE was slowly reduced under the self-reg-
ulation of the market mechanism. The fourth one was the policy in-
centive stage in 2007−2017. Publication of a series of agricultural new
policies in this stage motivated the internal vitality of agriculture and
rural development, including an increase of agricultural subsidies, the
realization of agricultural modernization, and promotion of structural
reform at the agricultural supply side (Liu et al., 2015).

Fig. 3 also showed that Northeast, East and South China were higher
than the national average level. North and Central China basically fitted
for the national average level, while Southwest and Northwest China
were lower than the national average level. With the vast land and high
soil organic matter in Northeast China, agricultural production was
relatively sensitive to climate, policies, and economy, showing the
higher fluctuations of AEE. With the economic development in Eastern
China, the agricultural modernization process was fast and had stricter
ecological environmental control. AEE had a faster speed of improve-
ment. Because of agroclimatic resources and the social-economic en-
vironment changed obviously, the AEE in South China had a faster
growth speed. Due to flat regional terrain, good water-soil conditions
and adequate labor force, agricultural production level and agricultural
modernization progress in North China and Central China were basi-
cally synchronous. Considering the less per capita cultivated land and a
high degree of land fragmentation in Southwest China (Wang et al.,
2015a,2015b), AEE was relatively lower and had slower growth. Due to
the poor natural conditions and agricultural input, the agricultural
production mode in Northwest China was relatively extensive and AEE
was kept at the minimum level. The regional difference of AEE in-
dicated that agricultural production was directly affected by light, heat,
water and soil and also suffered from the comprehensive impacts of
agricultural productivity, industrial policies, market demands and re-
gional economic level under different economic social development
conditions (Li et al., 2018; Liu et al., 2018a,2018b,2018c).

3.3. The spatial-temporal pattern of agricultural eco-efficiency

In order to reveal the spatial-temporal pattern of AEE, the average
values of AEE within each Five-Year Plan (FYP), were adopted for
analysis. With the natural breakpoint, all the value of AEE was sub-
divided into four grades in Fig. 4. During the period of 5th FYP and 6th
FYP, the grade of AEE in more than 2/3 provinces belonged to the first

grade or second grade. The spatial distribution is characterized by ob-
vious “core-periphery”, that is, the AEE of the central provinces is
generally lower than that of the southeast coastal and northeast pro-
vinces. During the period of 7th FYP and 8th FYP, AEE was slightly
improved, and the grade of AEE in over 1/2 provinces belonged to the
first grade or second grade. The spatial differentiation feature was ob-
vious. During the period of 9th FYP and 10th FYP, AEE had a higher
amplitude of variation. Particularly, during the 10th FYP, the grade of
AEE in 20 provinces was reduced. The spatial agglomeration features
gradually appeared. During the period of 11th FYP and 12th FYP, AEE
was remarkably improved. The grade of AEE in over 1/2 provinces was
the fourth grade, showing the relatively remarkable club convergence.
During the period of 13th FYP, the grade of AEE in more than 24
provinces belonged to the third grade or fourth grade. However, owing
to regional differences in agricultural policy execution, spatial ag-
glomeration features of AEE were slightly weakened.

From 1978–2017, AEE had a phasic feature with a national eco-
nomic plan in time and space. During the period of 5th FYP and 6th
FYP, the nation adopted the fewer agricultural incentive policies and
the grade of AEE was lower. During the period of 7th FYP and 8th FYP,
stimulated from the agricultural product market to the plan-oriented
market transformation, AEE was evidently increased with the increase
of the expected output. During the period of 9th FYP and 10th FYP, the
national policy incentives were weakened and AEE was decreased.
During the period 11th FYP and 12th FYP, the nation paid more at-
tention to the problem of “agriculture, rural areas, and rural residents”.
Also, agricultural development entered into the post-agricultural tax
period. In this way, AEE has improved again. During the period of 13th
FYP, agricultural energy-saving and discharge reduction measures were
further reinforced. The regional variation of AEE was higher. Evidently,
national policy incentives have become the indicators of Chinese AEE
evolution (Wagan et al., 2018). Particularly, implementation of the
agricultural product market mechanism, removal of agricultural tax
and increase of agricultural subsidies, AEE was constantly changed in
time and space (Rao et al., 2012). It was worth noting that even if AEE
was constantly improved with the increase of expected output, un-
expected output was present in the increasing trend as a whole. The
environmental pollution problem caused by agricultural development
absolutely couldn’t be ignored with the improvement of AEE.

3.4. Influencing factor analysis of agricultural eco-efficiency

The comparative analysis of the estimation results of three models
showed that although there were two insignificant factors in each

Fig. 3. Agricultural eco-efficiency in different regions of China from 1978 to 2017.
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model, the goodness of fit in FEM reached the maximum of 0.656, and
the influence directions were the same as the prediction. The P-value of
Hausman was 0.000, strongly refusing the null hypothesis.
Furthermore, to explore the influence of different variables on the es-
timation results, based on the study of Wang et al. (2015a,2015b), the
gross freight and GDP per capita were respectively used to replace the
total length of road and per capita disposable incomes of farmers in the
explanatory variables for the robustness test. The results had no sub-
stantive changes with the above-mentioned ones, indicating that the
above-mentioned models and estimated results were stable. To sum up,
this study chose the estimation results of FEM to analyze the influencing

factors of AEE in Table 2.
The results indicated that all the variables have passed the sig-

nificant test except for ROAD and PESTICIDES. Among these, IRRIGA-
TION and INCOME had positive impacts on AEE, implying that the in-
crease of agricultural irrigation facilities and the increase in farmers’
incomes could effectively improve AEE. What’ s more, the estimated
coefficient of INCOME was 0.095, indicating that when the average
disposable income of farmers was increased ¥100 yuan, AEE was in-
creased by 9.5%. Besides of IRRIGATION and INCOME, all the other
significant factors had negative impacts on AEE. Among which, the
estimated coefficient of FERTILIZER was the maximum as −0.180. On

Fig. 4. Spatial-temporal pattern of agricultural eco-efficiency in different stages of China.

Table 2
The estimation results of agricultural eco-efficiency in China.

Variables OLS FEM REM

ln (RAINFALL) −0.015** (−2.55) −0.013** (−2.46) −0.014** (−2.41)
ln (ROAD) −0.040*** (−9.28) 0.000 (0.04) −0.036*** (−8.2)
ln (IRRIGATION) 0.033*** (8.40) 0.011*** (2.67) 0.031*** (7.78)
APS −0.061*** (−7.73) −0.039*** (−5.04) −0.057*** (−7.24)
LIVESTOCK 0.000 (−0.36) −0.001*** (−2.65) 0.000 (−0.92)
ln (INCOME) 0.020*** (4.12) 0.095*** (10.51) 0.024*** (4.58)
APPPI 0.000*** (−4.28) −0.001*** (−6.54) −0.001*** (−5.56)
ln (ARE) −0.038*** (−8.53) −0.015*** (−3.20) −0.035*** (−7.79)
EDUCATION −0.001*** (−3.73) −0.001*** (−4.28) −0.001*** (−4.3)
ln (TECHNOLOGY) −0.088*** (−14.93) −0.076*** (−13.64) −0.086*** (−14.74)
ln (FERTILIZER) −0.354*** (−3.48) −0.180* (−1.85) −0.306*** (−3.02)
ln (MPF) −0.027*** (−8.19) −0.027*** (−8.88) −0.027*** (−8.22)
ln (PESTICIDES) 0.006 (1.38) −0.003 (−0.63) 0.007 (1.45)
CONSTANT 1.673*** (13.80) 0.653*** (4.30) 1.580*** (12.64)
F-statistic 95.59*** 101.11***
F-statistic (P value) 0.000 0.000
R2 0.636
Adjust R2 0.629
R2 (within) 0.656 0.615
Hausman (P-value) 0.000

Notes: Value out of the bracket is the parametric estimation value; value in the bracket is t-test value; *, **, *** represent significance at 10%, 5% and 1%,
respectively.
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the one hand, it showed that Chinese agriculture constantly enhanced
the dependency on fertilizers, which developed an important role in
improving the grain output. However, excessive application of fertili-
zers resulted in serious pollution in soil and water. On the other hand,
structural adjustment of fertilizer application and testing soil for for-
mulated fertilization could measure the soil nutrition, showing that the
compound fertilizer subsidy policy to be published could reduce ni-
trogen and phosphorus in farmland soil. The coefficient of TECHNOL-
OGY was −0.076, indicating that agricultural mechanization would be
the inevitable direction of modernized agricultural development.
However, how to change the traditional labor-intensive production
mode and reduce the investment in agricultural petrochemical re-
sources is a problem that must be solved in the development of modern
agriculture. Besides, the coefficients of APS, MPE and ARE were large,
showing that moderate guidance of agricultural plantation structure
transferred to cash crops from grain crops, and reduction of plastic film
utilization could reduce agricultural pollutant discharge and improve
AEE.

4. Discussion and policy implications

This paper has explored the spatial-temporal variation of AEE as
well as its influencing factors. Although relevant researches have been
carried out (Gancone et al., 2017; Hou and Yao, 2018; Rybaczewska-
Błażejowska and Gierulski, 2018), there are still some innovations
made in our study. Firstly, the unexpected output in our study has been
estimated by an inventory analysis, which has a good performance in-
directly and accurately reflecting the agricultural pollution discharges
in national-scale (Chen et al., 2006); Secondly, the agriculture in broad
sense is selected as the research object in this study, while the agri-
culture in narrow sense is selected by Hou and Yao (2018), and by
which the estimated results would have a great deviation with the
physical truth (Wang and Zhang, 2018); Thirdly, we provided an in-
tegrating study on the nature and humanity factors affecting AEE,
which is great of significance for providing support for agricultural
policies making (Deng and Gibson, 2019). Through these innovative
explorations, we could gain some insights into the Chinese agricultural
sector.

Since the reform and opening-up, Chinese society and economic
structure had a huge variation (Liu et al., 2018a,2018b,2018c). Chinese
official statistics showed that the urbanization rate increased from
17.9% in 1978 to 58.52% in 2017, while the proportion of primary
industry in GDP dropped from 28.2%–7.9% (National Bureau of
Statistics of China, 2019). It indicates that China has transitioned from
traditional agriculture society to modern society and from a planned
economy to a modern market system (Bai et al., 2014). In this process,
agricultural product output and input factors were dramatically
changed, while AEE showed the trend of stable improvement with the
time variation under the incentives and constraints of reform and po-
licies. However, due to different regional resource endowment, agri-
cultural productivity and industrial policies, the spatial-temporal evo-
lution of AEE had the obvious provincial difference. For example, the
AEE of Shanghai was significantly increased from 0.206 in 1978 to
1.154 in 2017, while Inner Mongolia was slightly increased from 0.325
to 0.643. Thus indicated that the agricultural modernization still faced
the arduous tasks of resource-saving and environmental protection
(Huang and Jiang, 2019). As a result, the future national agricultural
policy should be based on motivating the agricultural development
vitality, depending on the strategies of targeted poverty alleviation and
rural revitalization (Liu and Li, 2017) to compensate for regional dis-
advantages of agricultural development, and give play to the advantage
of backwardness in agricultural backward areas.

Future Earth Plan and Sustainability Science focus on the integra-
tion of nature and humanity elements (Wang et al., 2015a,2015b).
Throughout the existing studies, it can be found that nature and social-
economic factors are primary variables to affect AEE (Aznar-Sánchez

et al., 2019; Liu et al., 2018a,2018b,2018c; Wang and Zhang, 2018).
This paper inspected the influencing factors of AEE from the agri-
cultural basic condition, agricultural industrial structure, agricultural
development potential and agricultural input strength. The results
showed that IRRIGATION and INCOME had positive impacts on AEE.
Therefore, it is proposed to further strengthen the protection of agri-
cultural ecology, promote the comprehensive consolidation of rural
land, and accelerate the development of high-efficiency agriculture, as
a major strategy to achieve high-quality national agricultural devel-
opment and improve the modern agricultural governance system (Liu,
2018). In addition, the results also showed that an increase of sub-
stantial productive factor input including fertilizers, machinery and
plastic films were the important factor to restrict improvement on AEE.
China is the largest producer and consumer of fertilizer in the world
(Huang and Jiang, 2019), and there is significant evidence of overuse
and inefficient use of fertilizer in agriculture (Huang and Jiang, 2019;
Zhu et al., 2016). Besides, more than 1 million tons of plastic films are
used each year in agricultural production to promote or protect crop
growth (Chen et al., 2013), and a relatively large amount of plasticizers
may be released into the environment (Navarro et al., 2010). Hence, to
issue compound fertilizer subsidies and waste agricultural film re-
cycling would be useful for further improvement of AEE. However, as
the key influencing factor of grain output, agricultural mechanization
showed a negative correlation with AEE, indicating that current agri-
cultural mechanization aimed to increase production, instead of im-
proving quality (Zhou and Kong, 2019). Also, it might be urgent for
Chinese agricultural policies’ orientation to transform from the increase
production to quality improvement.

The long-term evolution trend and the influencing factors indicated
that Chinese AEE is a complicated problem of comprehensive influence
including nature, society, economy and policies. Agricultural change is
not simply determined by market and (or) technology, or property right
system and other factors that people pay more attention to today, but
by the interaction between these factors and human land relationship
resource endowment, urban-rural relationship, state behavior, and
historical coincidence (Li et al., 2019a,2019b). Therefore, the for-
mulation of agricultural policies should be based on the requirements of
Two-oriented Agricultural development. Namely, in policy planning as
well as management decisions, our attention should always be paid not
only to the maximization of agricultural production, but also to the
environmental resource overexploitation (Li et al., 2019a,2019b; Toma
et al., 2017). Besides, the agricultural sector should improve the quality
and efficiency of agricultural supply through structural reforms on the
agricultural supply side, and think deeply about how to improve overall
agricultural efficiency and international competitiveness in the context
of economic globalization (Kong, 2016). Furthermore, the transforma-
tion of the agricultural development model should be centered on im-
proving the land output rate, resource use rate and labor productivity,
reduce dependency on petrifaction agriculture, decrease discharge of
agricultural pollutants, greatly cultivate the concept of the resource-
saving and environmental protection of agricultural subjects (Deng and
Gibson, 2019), and explore the new idea and new mode of circulative
agriculture, ecological agriculture, and intensive agriculture.

This paper measured Chinese AEE and analyzed its influencing
factors in 1978–2017, finding that Chinese AEE is the concurrent result
of multiple factors. Exploring the differential contributions from mul-
tiple factors is helpful for improving our understanding of the effects of
human activities on the agriculture sector (Liu et al.,
2018a,2018b,2018c). With the global economic integration, changing
global climate, changing international agricultural plantation structure,
and foreign direct investment, the influence on agricultural production
is increasingly valued (Ma and Feng, 2013). However, this study was a
lack of corresponding analysis and discussion. Even if from the per-
spective of quantitative analysis results, AEE not just had a simple
linear relationship with its influencing factor. For instance, previous
studies indicated that per capita cultivated land was present in the “U”
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correlation with AEE (Rybaczewska-Błażejowska and Gierulski, 2018;
Wang et al., 2015a,2015b). Overall, AEE is a useful index to evaluate
the stability and sustainability of agricultural ecological system. To
improve the AEE is the goal orientation of agricultural development,
the key of which is to take measures in light of local conditions and
make scientific decisions based on the agricultural regional types. At
the same time, it is proposed to strengthen the governance and man-
agement of agricultural system and promote the establishment of
agricultural management engineering system. In addition, AEE should
be placed on the evolution of agricultural ecosystem and the interaction
of human-land system with consideration of the physiographic condi-
tions, regional ecological environment, large-scale climatic changes,
international trade, and national ecological civilization construction.
Our results provide reference for scientifically promoting Chinese rural
revitalization, modernization of agriculture and rural areas, and na-
tional territorial space planning in the new era.

5. Conclusions

Considering the provincial panel data in China from 1978 to 2017 as
the research units and taking agriculture in broad sense as the study
object, the AEE was measured by the Super-SBM Model, and the in-
fluencing factors were screened out by the FEM. During the period of
1978–2017, expected output and unexpected output of Chinese agri-
culture were synchronously increased, while the change of input factors
was totally different and gradually transferred to materiality from re-
sources. The estimated results revealed that Chinese AEE increased
from 0.405 in 1978 to 0.713 in 2017, with an increase of about 76%.
However, the current AEE had a declining trend and efficiency in some
provinces was still lower. In addition, AEE had remarkable staging
features and overall underwent four stages, including free development,
reform promotion, market regulation and policy incentives. Affected by
the land system, economic environment and agricultural policies, AEE
had the obvious provincial difference. The spatial-temporal pattern of
AEE was present in the features including spatial polarization, spatial
differentiation, spatial agglomeration and spatial reconstruction in time
order. During this period, national policy incentives have become in-
dicators of AEE. FEM estimation results indicated that there were
eleven variables had significant impacts on AEE. Among those, IRRIG-
ATION and INCOME developed the positive impacts on AEE, while the
other nine variables caused the negative impacts. Our results indicated
that Chinese agriculture still faces the arduous tasks of resource-saving
and environmental protection, the agricultural policies should avoid
from falling into the trap of profit-seeking, and actively change agri-
cultural production mode and explore new agricultural management
mode.
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