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The systematic decline of rural areas in the process of rapid urbanization has become a global trend, cre-
ating greater challenges for sustainable rural development. As the spatial projection of socio-economic
development and living environment in rural areas, the continuous tracking of rural settlements (RUS)
is crucial to quantify the imbalance of rural development. However, consistent information on RUS is
highly needed but is quite deficient in current research. In this study, a cost-effective mapping model
was proposed to produce an annual RUS dataset in the rapid urbanization region of Beijing-Tianjin-
Hebei (BTH) in North China during 1990–2020, and the temporal-spatial regularity of RUS changes
was further analyzed. The location-based and the area-based comparison verified the effectiveness of
our model, with a mean overall accuracy of 85% and a mean correlation value of 0.88, respectively.
The total area of RUS in the BTH region increased by 2561 km2 from 1990 to 2020, while the average size
of RUS remained stable after 2005. The annual change trends in RUS appeared with increasing and
decreasing accounting for 76.33% and 23.67%, respectively. The centroids of RUS in Tianjin and Hebei
have moved closer to Beijing, while those in Beijing have moved away from the former. Notably, we have
identified 56.3% counties in the BTH region belong to the ‘‘Convex-I” change type in RUS. In general, our
work can help to consistently quantify the spatiotemporal patterns of RUS in a cost-effective way, provid-
ing more explicit spatial information and continuous temporal information for rural residential land
management.

� 2023 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
1. Introduction

Rural settlements (RUS) are the main spatial form and the con-
centrated expression of the cooperative situation of residence as
well as the industry in the rural areal system [1], whose sponta-
neous organization and formation mechanisms reflect the eco-
nomic development [2], biodiversity conservation [3], and
cultural transmission in rural areas [4]. Increasing RUS develop-
ment with the declining rural population has occurred in many
developing countries due to accelerated urbanization [5,6], which
may accelerate the process of rural hollowing [7], development
weakening [8], and the loss of ecosystem services in the rural areal
system [9], creating great barriers to achieve the sustainable devel-
opment goals (e.g., SDG 1, 2, and 11) promoted by United Nations.
Therefore, it is of great significance to quantify and characterize the
spatiotemporal patterns of RUS for promoting the implementation
of the rural revitalization strategy and achieving sustainable rural
development.

Previous literature on RUS focused on a range of aspects, from
the dependence of RUS on the natural environment [10,11], the
growth of RUS associated with social-economic development
[12], and changes in urban–rural relations and sustainable
approaches to RUS [13], to the landscape pattern [14], hierarchical
classification [15], and differentiation characteristics [16]. Despite
various datasets that included censuses, satellite imagery, and land
use maps that have been used to capture the dynamics of RUS in
the above-mentioned studies, some limitations still remained.
First, from the perspective of spatial explicitness of RUS, the quan-
titative capability of census data from the statistical yearbook or
household survey is insufficient due to the coarse resolution. Sec-
ond, in view of the temporal consistency of RUS, either manually
interpreted satellite imagery or existing land use maps are unable
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Fig. 1. The location of the BTH region, China.
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to meet the need for continuous tracking of RUS due to laborious
human intervention. These limitations pose a significant obstacle
to understanding the characteristics and mutations of RUS dynam-
ics that vary with the encryption of spatial and temporal scales.
Meanwhile, with the rapid but uneven urbanization and the inte-
grated urban–rural development, rural reconstruction and trans-
formation development caused great attention in rural
geography, land management, and regional planning communities
[17–19]. Accurate information on the dynamics of RUS is highly
needed but is quite deficient, which restricts a consistent process
analysis of the spatiotemporal patterns of RUS and provides lim-
ited scientific references for rural spatial planning and related pol-
icy making.

Considering the related censuses at a coarse spatial resolution
(usually at the county-level) and the related field survey with a
low temporal frequency (usually with a 5- or 10-years interval)
[20], an automatic mapping model based on satellite images with
temporal and spatial consistency for RUS is critical to reduce
human interference and enhance the objectivity of the produced
dataset, which can deliver more cost-effective service than tradi-
tional censusing or field surveying [21]. Although it is possible to
delineate residential habitats for human beings within a clear spa-
tial extent (i.e., with a specific boundary) thanks to the develop-
ment of Earth observation technology [22], existing works mainly
attempted to map urban settlements through multi-sources
remote sensing imagery [23–27], while an emphasized focus on
rural areas was rare [28,29]. For example, the Global Human Settle-
ment Layer (GHSL) database presents the application of the degree
of urbanization via a logic of cell clusters’ population size, popula-
tion and built-up area densities [30]. The global annual impervious
area (GAIA) provides a paradigm for mapping annual urban extents
dynamics during 1985–2018, using the state-of-art cloud comput-
ing platform and the full archive of Landsat images [31]. Also, there
are several urban settlement products that have been developed in
specific countries and even globally [22,24,32]. After all, compared
to consistent and concentrated urban settlements, the spatial dis-
tribution of rural settlements is more dispersed and fragmented,
which leads to a great challenge in delineating RUS boundaries
from fine-resolution and consistent processes, especially within a
large region over a long-term period. Consequently, it is urgent
to develop a cost-effective approach to mapping RUS at a fine-
resolution and produce a long-term dataset of RUS at a continuous
time scale.

Therefore, to better understand the spatiotemporal regularity of
rural settlement changes from a consistent process analysis per-
spective, the objective of this study is two-fold: (1) to propose a
spatial explicit mapping model for RUS that can capture their
dynamics annually and produce the annual RUS dataset in the
rapid urbanization region of Beijing-Tianjin-Hebei (BTH) in North
China during 1990–2020, and (2) to investigate the temporal and
spatial dynamics of RUS at multi-scales over the three decades in
BTH region. To our limited knowledge, this study provides the first
cost-effective and objective way to quantify and characterize the
spatiotemporal regularity of RUS changes.
2. Materials and methods

2.1. Study area

The Beijing-Tianjin-Hebei (BTH) region, located in the northern
part of the North China Plain (36�50–42�370N, 113�110–119�450E),
was selected as the case study region (Fig. 1). This region contains
two municipalities (Beijing and Tianjin) and Hebei Province, with a
total area of approximate 21.8 � 104 km2. The geomorphology of
this region includes plains, mountains, hills, and a few plateaus
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and the terrain of the northwest is high, whereas that of the south-
east is low. It belongs to a semi-humid and semi-arid continental
monsoon climate zone with an annual average temperature, rang-
ing from 10.4 to 11.9 �C and an annual average precipitation, rang-
ing from 375.5 to 684.7 mm. As the economic development pole of
northern China, the BTH region has two metropolises with a pop-
ulation of over 10 million, Beijing and Tianjin, as well as the less
developed mountainous areas in northern and western Hebei and
the traditional agricultural production areas in central Hebei. For
a long time, the promotion of the BTH cooperative development
strategy highly valued by the central government has been
restricted due to the uncoordinated urban–rural development
and obvious differences in rural development in this region. There-
fore, the selection of this region is of representative significance for
understanding the spatiotemporal regularity of rural settlement
changes from a consistent process analysis perspective.

2.2. Data sources

Annual mapping of RUS requires input data that are continuous
in the temporal dimension, completed coverage in the spatial
dimension, and accessible from public sources. Therefore, the
Landsat-derived annual China land cover dataset (CLCD) from
1990 to 2020 produced by Wuhan University was used in this
study to obtain the original impervious surface area (ISA) [33].
The overall accuracy of CLCD achieved 79.31% and a mean F1 score
of the impervious area over 72% via visually interpreted indepen-
dent samples, which exhibited a better and more stable accuracy
concerning the existing annual LC products such as MCD12Q1
and ESACCI_LC [34,35]. Besides, a prolonged artificial Nighttime-
light (NTL) dataset of China during 1984–2020 based on the Long
Short-Term Memory (LSTM) network with an average root mean
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square error (RMSE) of 0.73 and the coefficient of determination
(R2) of 0.95 [36], which is an important indicator of human activi-
ties including socio-economic and energy consumption, was used
in this study to distinguish RUS from urban extent. And the Point
of Interest (POI) data within the built-up area of each city in the
BTH region was also used in this study (download via https://
www.resdc.cn/data.aspx?DATAID=302) to sample NTL value. In
addition, the remote sensing-based dataset of land use land cover
change over multiple periods in China (CNLUCC), which provided
the spatial distribution of rural settlements since the 1980s with
a five-year interval [37], was used to compare with the RUS dataset
we mapped.

2.3. Mapping model for RUS

The RUS mapping model proposed in this study on the basis of
referring to similar studies consisted of three basic steps [24]. First,
a kernel density derived ISA (ISA-KD) map was calculated by using
the kernel density estimation (KDE) method from 100 m aggre-
gated ISA data, which reflected the neighboring density of impervi-
ous surfaces at an upscaling pixel level. Second, we performed the
cellular automata (CA) based approach for the ISA data, combined
the ISA-KDmap and then the delineation of the initial boundary for
each patch was completed after morphological processing, in
which most line-type objects were eliminated and the holes within
the target patches were refilled. Ultimately, we improved the final
RUS patches by applying a double filter based on the dynamic
thresholds of NTL as well as an object-based cluster derived patch
size, which differentiated the rural patches from urban and other
patches in view of the spatial adjacencies and human activities.
Besides, it should be pointed out that all the steps of the proposed
mapping model were designed and implemented based on the
Google Earth Engine (GEE) platform [38], which ensures the exten-
sibility of this model. Fig. 2 illustrates the general technical flow of
the RUS mapping model, and the paragraphs that follow provide a
detailed description of each step.

2.3.1. Kernel density estimation
KDE, a non-parametric statistical method for generating proba-

bility densities [39], has been widely used in describing the spatial
heterogeneity of many geographical phenomena [40,41]. In this
step, we first aggregated the ISA data at the spatial resolution of
30 m into the upscaled ISA data in terms of the percentage of ISA
areas within the 100 m grid. Then, the KDE method was imple-
mented for each upscaled ISA pixel to generate the ISA-KD map,
in which the kernel density of each pixel that represents the accu-
mulative influence of its neighborhood was calculated.

2.3.2. Initial boundary delineation
Combined with the derived ISA-KD map that provided an

approximate extent for patch boundary delineation based on
describing the spatial heterogeneity of the ISA data, some Non-
ISA pixels of which (due to the coarse resolution) within areas with
high kernel densities (KD value > 80%) were identified and should
be refilled to avoid the fragmentation of boundary delineation. As a
‘‘bottom-up” model to simulate a complex geographical phe-
nomenon, the CA-based approach can determine the state conver-
sion of a cell under the specific transition rule [42], which is
suitable for our needs at this step. Therefore, the CA-based
approach was adopted in this step to refill those Non-ISA pixels
with high KD values by using a 7 � 7 Moore neighborhood. Given
that the implementation of CA only produced a more homoge-
neous extent of ISA compared with the initial ISA data, we per-
formed two morphological approaches before the boundary
delineation, including dilation and erosion. Among them, the
dilation processing was used to convert Non-ISA pixels around
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areas with high kernel densities (which may be missed in the
CA implementation) into ISA pixels, and some line-type objects
(e.g., roads, rivers, or drains) were removed by the erosion process-
ing. Finally, the delineation of the initial boundary for each patch
was completed and converted into a vector-based format.

2.3.3. Post processing
In the third step of the RUS mapping model, the final RUS

patches were derived after the double filter processing, including
an area-based filter and an NTL-based filter. In terms of the area-
based filter, we clustered the initial patches to obtain their sizes
by using an object-based approach based on their spatial adjacency
[43]. And large clustered patches (> 10 km2) that were recognized
as ‘‘urbanized patches” were further filtered, in which the thresh-
old was determined on the minimum area of county-level cities
in relevant statistics. In terms of the NTL-based filter, we first cal-
culated the mode values of NTL within 200 urban POI samples from
1990 to 2020, then treated the mode value in each year as the
dynamic threshold to mask areas higher than it in the correspond-
ing year. The NTL-based filter was proposed by referring to the use
of NTL data in some urban studies [44,45], and adopting the idea of
the reverse mask to better screen out some small urbanized
patches that may be missed in the area-based filter.

2.3.4. Technical validation
In order to evaluate the validity of the proposed mapping model

and the accuracy of the resultant product, a location-based and an
area-based comparison were both carried out with the CNLUCC
dataset in terms of the spatial details of RUS and their overall pat-
terns. As for the location-based comparison, we randomly collected
�10,000 test points within the extent of rural settlements of
CNLUCC for seven years (i.e., 1990, 1995, 2000, 2005, 2010, 2015,
2020), and then the overall accuracy (OA) of our product for each
representative year was calculated. As for the area-based compar-
ison, a cross-scale statistical method that included three different
aggregated grids (i.e., 10 km � 10 km, 30 km � 30 km, and
50 km � 50 km) was adopted to obtain the RUS areas at different
scales, and the scatter plot and the linear regression with the quan-
titative metrics of the correlation coefficient were used to verify
the agreement of the total area of RUS between our product and
the CNLUCC.

2.4. Spatiotemporal analyses of RUS

2.4.1. Piecewise linear regression
The piecewise linear regression (PLR) method was implemented

to detect trends of the annual changes in the total area of RUS over
the period of 1990–2020 in the study area. The PLR method, which
is also called segmented linear regression [46], is a special case of
switching regression whereby the independent variable is seg-
mented and the regression analysis is performed separately for
these segments [47]. This method determines the segmentation
reasonableness (detected break-points between the segments) by
using a significance test to reduce the subjective error caused by
visual inspection, which can be expressed as

Y ¼ a1 þ b1X; X � J1;

Y ¼ a2 þ b2X; J1 � X � J2;

..

.

Y ¼ an þ bnX; X � Jn;

ð1Þ

where X and Y are the independent and dependent variables,
respectively. a1 to an and b1 to bn are the intercepts and slopes of
the linear segments, respectively. And J1 to Jn are the break-points
between the linear segments. Notably, two statistics, the coefficient
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Fig. 2. Illustration of the general technical flow of the RUS mapping model.
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of determination (R2) and the estimate of error variance (r2), are
used to reflect the performance of the regression analysis. In other
words, the break-point between each two interval segments with
the largest R2 or the smallest r2 will be selected. Here the PLR
method was performed using the segmented R package [48]. If
Davies’ test was significant, a segmented regression specifying the
best break-point was determined on the time-series data.

2.4.2. Identification of change types
Considering land use transition is a mirror of socio-economic

development, especially in rural areas, the change of rural residen-
tial land can directly reflect the evolution and transformation pro-
cess of the rural territorial system. Therefore, we first aggregated
the annual RUS maps into their fractional area maps within a
reduced grid of 1 km � 1 km, and a spatially explicit map of the lin-
ear trend of RUS areas change was calculated based on the follow-
ing formula [49]:

slope ¼ n�Pn
i¼1ði� AiÞ �

Pn
i¼1i�

Pn
i¼1Ai

n�Pn
i¼1i

2 � ðPn
i¼1iÞ

2 ; ð2Þ

where slope is the change rate of RUS areas; i represents the ith year
from 1990 to 2020, and n is the number of years; Ai is the area per-
centage of RUS in the ith year. If the slope of the reduced grid is
greater than 0, which RUS area increased. If slope < 0, then RUS areas
are decreased within this grid. Then, we identified different change
types of the total area in RUS at the county-level based on time ser-
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ies analysis. Specifically, combined with the linear trend of RUS
areas change, the deviation value between the change curve and
linear regression line was calculated by the following equation:

V ¼
Pn

i¼1Ai

n
� An � A1

2
; ð3Þ

where V represents the deviation value between the change curve
and linear regression line, i represents the ith year, n is the number
of years, and Ai is the total area of RUS in the ith year. In our case,
four change types of RUS areas for all counties of the BTH region
were identified by the following criteria (Fig. S1 online): convex
increased (Convex-I, slope > 0 \ V > 0); concave increased
(Concave-I, slope > 0 \ V < 0); convex decreased (Convex-D,
slope < 0 \ V > 0); concave decreased (Concave-D,
slope < 0 \ V < 0).

3. Results

3.1. Performances of the mapping model

Based on the proposed mapping model, we generated the
annual RUS dataset from 1990 to 2020 in the BTH region. Fig. 3
illustrates an example (and its enlarged views in Fig. 3e) of how
to generate the final results from the initial ISA distribution. Com-
pared with the initial ISA data (Fig. 3a), the step 1 derived results
provided more information about the heterogeneity of impervious



Fig. 3. Illustration of the RUS mapping model in each step: (a) the initial ISA distribution of example in 2020, (b) the step 1 derived results, (c) the step 2 derived results, (d)
the step 3 derived results, and enlarged views from (a)–(d). Each subplot is overlaid with Google Earth (Basemap data � 2020 Google).
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areas by upscaling the spatial resolution of initial ISA data from 30
to 100 m based on the KDE method (Fig. 3b). After the CA and mor-
phological processing in step 2 (Fig. 3c), we then derived the initial
boundary delineation results, in which several unrelated impervi-
ous patches (e.g., roads and drains) were effectively eliminated,
and some ‘‘holes” (e.g., water bodies and green spaces) within
the related patches were refilled. Finally, by implementing the
double filter that integrated with dynamic thresholds of NTL as
well as an object-based cluster in step 3 (Fig. 3d), we identified
the extent of RUS from the initial ISA data of the example. Overall,
the aforementioned example helps to portray the procedure of the
proposed mapping model and its outcomes from a microscopic
view.

In terms of temporal dynamics of the RUS dataset, three exam-
ples in Beijing, Tianjin, and Hebei are composited by corresponding
Google Earth/Landsat images using a natural color (in red–green–
blue bands) in the representative years 2020 (Fig. S2 online),
2010 (Fig. S3 online), 2000 (Fig. S4 online), and 1990 (Fig. S5
online). Generally, the overall pattern and spatial details of RUS
match well with the actual extent of RUS on the satellite image
as well as the CNLUCC in each example, proving the mapping
model proposed in this study enables the identification of the rural
settlement extent in different areas within different periods.
Besides, it can be found that several isolated patches surrounding
the urban area were annexed within the process of urbanization,
which are the urban–rural fringe that can be characterized by
low-income groups with limited amenities like retail, warehous-
ing, or residence [50]. These are human settlements that, although
in a blurred zone, are functionally oriented to the urban (so-called
‘‘urban villages”) and also can be well excluded from RUS in this
study. Given the location-based comparison, we also randomly
generated � 10,000 test points from the CNLUCC in each represen-
tative year and the mean overall accuracy of RUS over the past
30 years achieved 84.91%. Considering that the CNLUCC was pro-
duced manually, and our results were automatically produced
from long-term ISA data that reduced intensive human labor and
2119
subjectivity, which means that a little difference in random
location-based comparison is acceptable.

Furthermore, a cross-scale statistical method was also adopted
to assess the performance of the proposed mapping model in view
of area-based comparison. In general, scatter points between RUS
and CNLUCC are distributed around the 1:1 line over years and
cross scales (Fig. S6 online). Specifically, the mean correlation value
that crosses all scales in each representative year was greater than
0.90 (Fig. S6a online), 0.92 (Fig. S6b online), 0.88 (Fig. S6c online),
and 0.82 (Fig. S6d online), respectively. Therefore, the total area of
RUS derived from our proposed mapping model showed good con-
sistency with the CNLUCC in view of cross-scale comparison. Given
the offset between the 1:1 line and the linear fitting line, we found
the reduced area of RUS across all scales was slightly higher than
those from the CNLUCC, which is likely due to different definitions
and approaches used in interpreting the satellite image. Notably,
the correlation between RUS and CNLUCC appears a declining
trend from 2000 to 2020 in all scales, indicating the distinction
between urban and rural areas becomes more complicated due
to rapid urbanization.

3.2. Temporal characteristics of RUS

To present the annual changes of RUS over the past three dec-
ades, the total area of RUS in the entire BTH region as well as three
administrative zones was calculated for each year and the break-
points for their change trends were detected based on the PLR
method (Fig. 4 and Table S1 online), in which the best break-
point between each two interval segments during 1990–2020 with
the largest R2 or the smallest r2 was selected. From the perspective
of the entire BTH region, the total area of RUS increased sharply
from 13,025 km2 in 1990 to 14,804 km2 in 1997 (Fig. 4a), with
an annual change rate of 0.258 � 103 km2/a (P < 0.001), which is
nearly 8 times the rate (0.034 � 103 km2/a, P < 0.001) during
1997–2020 (from 14,804 km2 to 15,586 km2). From the perspective
of different administrative zones, the annual changes in the total



Fig. 4. The annual changes for RUS in the total area and the average size during 1990–2020 in the entire BTH region (a), Beijing (b), Tianjin (c), and Hebei (d).
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area of RUS differed in the near-metropolitan area, the plain area,
and the mountainous area. As shown in Fig. 4b, the total areas of
RUS in Beijing fluctuated with the annual change rate of
0.007 � 103 km2/a (P < 0.001) during 1990–1997, then declined
considerably from 1050 km2 in 1997 to 810 km2 in 2020 with
the annual change rate of�0.013� 103 km2/a (P < 0.001). Although
the change trend of RUS areas in Tianjin was slightly different from
that of Beijing before the break-point (2001), the total area of RUS
in Tianjin also had a substantial decrease of � 18% from 1280 km2

in 2001, to 1053 km2 in 2020 (Fig. 4c). In contrast, the total area of
RUS in Hebei (Fig. 4d) increased significantly from 1990 to 1997
with the annual change rate of 0.252 � 103 km2/a (P < 0.001), then
moderately increased after the break-points with the annual
change rate of 0.059 � 103 km2/a (P < 0.001).

To explore temporal changes in RUS patches during 1990–2020
in the BTH region, we also calculated the average size and the stan-
dard deviation of RUS patches for each year. As shown in Fig. S7a
(online), the average size of RUS patches in the BTH region gradu-
ally increased from 0.28 km2 in 1990, reached the maximum size
(about 0.33 km2) in 2003, then maintained around 0.32 km2 after
2005. Meanwhile, the standard deviation of RUS patches deceler-
ated increased from 0.32 in 1990 to 0.39 in 2005, then gradually
increased from 2005 to 2020. It is important to point out that
although the change in the average size of RUS patches has gradu-
ally stabilized, the variations in the size of RUS patches have grad-
ually widened in the BTH region over the past 30 years.
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Furthermore, by identifying spatially disconnected RUS patches
using an object-based method, each RUS patch was sorted by its
size and given a unique ranked identification. As shown in
Fig. S7b (online), the size of RUS patches exhibited an exponential
decay trend with the increase in the number of RUS patches. The
enlarged view of curves in Fig. S7b (online) for different years fur-
ther showed that the turning-points in these trends occurred less
than 4 km2 before 2000, while occurred greater than 4 km2 after
2000. On the other hand, a notable expansion of the size of RUS
patches can be observed over the past 30 years in the BTH region.
In particular, the total number of large RUS patches (greater than 1
km2) in 1990 is 1523, which is about doubled in 2020 (3196).

3.3. Spatial variations of RUS

The spatially explicit map that was classified into ‘‘Increased
(slope greater than 0, P < 0.05)” as well as ‘‘Decreased (slope < 0,
P < 0.05)” was calculated based on the slope of linear trend. In view
of the entire BTH region (Fig. 5a), the grids with the increasing
trend in the RUS area accounted for 76.33% and a 23.67% decrease
of all the reduced grids. In view of different administrative zones,
the proportions of increased and decreased grids in Beijing were
58.13% and 41.87%, respectively, and it can be found that contigu-
ous decreased grids were mainly distributed around the central
urban area of Beijing (Fig. 5e). As for Tianjin, the grids with the
increasing trend in the RUS area accounted for 58.33%, of which



Fig. 5. (a) Spatially explicit map of RUS areas changes trend at 1 km � 1 km grids. The enlarged views show the proportion of increased and decreased grids in different
administrative zones. The trajectory of the RUS centroid from 1990 to 2020 is shown in subplot (a); subplots (b), (c), and (d) are the zoom-in subplots for the trajectories of the
RUS centroid in Beijing, Tianjin, and Hebei, respectively. Subplots (e), (f), and (g) are the zoom-in figures for the main distribution of decreased grids in Beijing, Tianjin, and
Shijiazhuang, respectively.
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41.67% were decreased grids, similar to Beijing, contiguous
decreased grids were also mainly distributed around its central
urban area (Fig. 5f). For Hebei, which has the largest zonal area,
its increased (79.77%) and decreased (20.23%) grids proportion
was similar to that of the entire BTH region. Similarly, as the lar-
gest city in Hebei, a large number of decreased grids were also dis-
tributed around Shijiazhuang, which is the provincial capital city of
Hebei (Fig. 5g). In addition, based on the derived RUS patches
within each administrative zone during 1990–2020 with a 5-year
interval, the centroids of which have been identified. In Beijing,
the centroid of its RUS patches had shifted about 7.64 km to the
northeast over the past three decades due to the significant
decrease RUS trend that occurred in the northeast area (Fig. 5b).
However, the centroids of RUS patches in Tianjin and Hebei had
shifted to the north about 9.31 km (Fig. 5d), and 12.31 km
(Fig. 5d), respectively, which is closer to the administrative bound-
aries of Beijing.

Furthermore, Fig. 6 illustrates the spatial distribution of four
change types of RUS areas for all counties (except for those coun-
ties without RUS since 1990) of the BTH region and the detailed
temporal changes for different change types in typical counties.
As shown in Fig. 6a, counties with the Convex-I in RUS areas
accounted for 56.3% of 199 counties, most of which are far away
from the well-developed urban zones. 9.5% of 199 counties saw
the Concave-I in RUS areas, most of which belong to mountainous
2121
zones. 42 counties (21.1% of 199 counties) mainly distributed in
suburb zones showed the Convex-D in RUS areas. And those coun-
ties that are close to the central urban area and gradually occupied
by urban expansion showed the Concave-D in RUS areas (13.1% of
199 counties). Specifically, in view of the detailed temporal
changes for different change types in typical counties, Tangxian
(Fig. 6b) is a typical Convex-I county located in the middle of Hebei
(with a change rate of 1.58 and a deviation value of 16.77), which
represents the change type of RUS areas within the traditional agri-
cultural production counties under the context of rural population
loss. Kuangcheng (Fig. 6c) is a typical Concave-I county located in
the northern mountainous area of Hebei (with a change rate of
1.73 and a deviation value of �7.41), which represents the change
type of RUS areas within the natural mountainous counties with
the implementation of ecological protection project. Daxing
(Fig. 6c) is a typical Convex-D county located in the south of Beijing
(with a change rate of �1.56 and a deviation value of 11.02), which
represents the change type of RUS areas within the suburb coun-
ties under the context of rapid urbanization. Jinnan is (Fig. 6d) a
typical Concave-D county located in the southeast of Tianjin (with
a change rate of �1.76 and a deviation value of �5.18), which rep-
resents the change type of RUS areas within the highly urbanized
counties. Interestingly, as a more urbanized area, Beijing has fewer
Concave-D counties (districts) than Tianjin, which may be due to
the fact that the county-level administrative area of Beijing is too



Fig. 6. (a) The spatial distribution of four change types of RUS areas for all counties of the BTH region and the detailed temporal changes of Convex-I (d), Concave-I (c),
Convex-D (d), and Concave-D (e) in typical counties. The change rate of RUS areas is marked as ‘‘Slope” and the deviation value between the change curve and the linear
regression line is marked as ‘‘V”.
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large compared with Tianjin, and it is not a sign that the RUS in Bei-
jing is still experiencing a rapid decrease. In view of the counties
that are similar in socioeconomic status, we also found that they
may also belong to different change types in RUS (e.g., Chaoyang
and Haidian of Beijing) due to different terrain characteristics.
4. Discussion

4.1. Contributions of the proposed RUS mapping model

Compared with the automatic delineation of physical bound-
aries by using remotely sensed data in urban-related studies
[22,51], a cost-effective approach toward rural settlements map-
ping is considered insufficient due to the complexity and spatial
dispersion of the target objects within the un-emphasized rural
areas [28,52], placing restrictions on the quantitative understand-
ing of the evolution of villages that affected by the natural geo-
graphical environment and human socio-economic activities
[53,54]. In this regard, the proposed RUS mapping model in this
study delineated the initial patch boundary by enhancing the spa-
tial heterogeneity of the original ISA data and reducing its spatial
fragmentation, using an integrated framework of the KDE method,
the CA-based approach, and two morphological approaches. Then,
the final RUS patches were successfully identified using the area-
based as well as the NTL-based filter. The implementation of the
proposed mapping model here can capture the spatial heterogene-
ity of RUS changes and the structural differences between individ-
ual RUS patches over long-term periods and large scales, which is
critical information for the quantitative understanding of the rural
areal system that is not available from the conventional dataset
either censuses from field survey or other remote sensing-
derived human settlement mapping products like GHSL, GAIA,
etc. Also, it should be noted that both ISA and NTL data required
in the proposed model are sufficiently available in related public
products and their spatial resolution and accuracy are still improv-
ing with the efforts of relevant communities [55]. Therefore, our
proposed model not only provides an effective way to automatic
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mapping RUS that enables the reduction of human labor and sub-
jectivity but also may achieve higher accuracy with the improve-
ment of those input data from related studies.

4.2. Dynamics of RUS from the perspective of consistent process

Prior to this study, to our limited knowledge, the best publicly
available dataset of RUS in China was provided by the Resource
and Environment Science and Data Center, which recorded the spa-
tial distribution of RUS in China since the 1980s with a five-year
interval. Otherwise, the researches on the spatiotemporal patterns
of RUS were either carried out based on the county-level statistical
data or obtained in a small area by manual sketching. As for a large
region over a long-term period, quantifying the dynamics of RUS
from the perspective of the consistent process is quite deficient
due to the lack of annul RUS dataset, which constrains our ability
to provide more detailed information and scientific guidance for
related rural planning and policy making. In this study, based on
the proposed mapping model, we first produced the annual RUS
dataset with a spatial resolution at 30 m in the BTH region, China
during 1990–2020 on the GEE platform. Through spatiotemporal
analyses of these annual RUS dataset, we not only detected the
break-points of its areas change trends, the average size as well
as the standard deviation of its patches, and the size-rank relation-
ship of its patches from the temporal dimension, but also revealed
the heterogeneity of the annual changes of its areas, the migration
of its centroids, and the change types of its areas in different coun-
ties from the spatial dimension. Based on a fine-grained delin-
eation of RUS in both spatial and temporal resolutions here, we
can summarize the new findings in the regularity of RUS changes
compared with those from coarse-grained studies into two aspects.
One is promoting the research paradigm of RUS transformation
from a stage-wise qualitative description to an annual-wise quan-
titative detection over a long-term period, and the other is enhanc-
ing the understanding of the spatial heterogeneity of RUS at the
patch, grid, and zone levels within a large region. Consequently,
these analysis results provided spatiotemporally explicit informa-
tion that can support the simulation of the rural territorial system
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and the rural revitalization planning [56,57] compared to similar
results from census data. Additionally, due to the automatic pro-
duction process, these analysis results also demonstrated the feasi-
bility of achieving a real-time capacity for tracking the
development of RUS in a cost-effective way compared to similar
results from discontinuous spatial data.
4.3. Limitation analysis and future directions

Although the proposed mapping model and the produced
annual dataset are suitable for understanding the evolutionary
process of RUS across the BTH region over a long-term period,
we are also aware of two limitations of this study that need to
be further strengthened in future works. One is about the use of
ISA data at a finer spatial resolution for a more accurate delineation
of the RUS boundaries. Due to the lack of high-resolution historical
observation records, we used annual ISA data from 1990 to 2020 in
this study derived from Landsat images to generate the RUS data-
set at the spatial resolution of 30 m. Given the development of
Earth observation such as the Sentinel missions [58] as well as cor-
responding ISA products, some of the mapping errors in RUS with
Landsat-based ISA data due to its coarse resolution can be
improved in the future [59,60]. Another one is that some of the
parameters and thresholds of the proposed model need to be opti-
mized based on the different contexts of geographical zones when
applied at national or global scales [61]. For example, the KD value
and Moore neighborhood in the step of initial boundary delin-
eation were set based on repeated attempts of the experimental
process, which may not be suitable for regions where the geo-
graphical conditions differ significantly from those of the BTH
region, and requires figure out how to improve the generalization
of model parameters when expanding to a larger scale. Addition-
ally, the NTL-based filter thresholds vary greatly in regions with
different levels of economic development and ignorance of their
spatial variations in similar studies at the national or global scale
may cause filtering bias, which also needs to be further considered
in future works.
5. Conclusions

In view of the existing deficiency in the accurate information on
the dynamics of RUS, which restricts a consistent process analysis
of the spatiotemporal patterns of RUS and provides limited scien-
tific references for rural spatial planning and related policy making.
In this study, we proposed an automatic mapping model to consis-
tently delineate RUS boundaries and quantified the spatiotemporal
patterns of RUS from the perspective of consistent process in the
rapid but uneven urbanization region of BTH during 1990–2020.
The results showed the following: (1) from a methodological point
of view, the RUS dataset that was generated based on the proposed
mapping model showed a good agreement with the CNLUCC,
achieving a mean overall accuracy of 84.91% over the three decades
in view of the location-based comparison, and a mean correlation
value that crosses all scales was greater than 0.8 in view of the
area-based comparison. (2) From a temporal point of view, we
showed a trend of slower growth in the total area and the average
size of RUS in the BTH region over the past three decades, along
with a trend of widening differences within all RUS patches, and
the size of RUS patches exhibited an exponential decay trend with
the increase of the number of RUS patches. (3) From a spatial point
of view, we found that the spatial distribution of the annual change
of RUS areas in the BTH region is extremely uneven, the grids with
the increasing and decreasing trend in the RUS area accounted for
76.33% and 23.67%, respectively. RUS areas in more than half of the
2123
counties of the BTH region saw a Convex-I change type, most of
which are far away from the well-developed urban zones and
belong to the plain areas engaged in agricultural production. In
general, the cost-effective mapping model for RUS proposed and
the generated results herein are convincing, which extended an
annual-wise quantitative detection for RUS transformation and
enhanced the understanding of the spatial heterogeneity of RUS
across multi-scales, providing more explicit spatial information
as well as consistent temporal information for a better understand-
ing the spatiotemporal regularity of RUS changes.
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